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Abstract

Particle dispersion and the influence particle momentum exchange on the properties of a turbulent

carrier flow in micro-gravity environments challenges understanding and predictive schemes. The

objective of this effort has been to develop and assess high-fidelity simulation tools for predicting

particle transport within micro-gravity environments suspended in turbulent flows. The compu-

tational technique is based on Direct Numerical Simulation (DNS) of the incompressible Navier-

Stokes equations. The particular focus of the present work is on the class of dilute flows in which

particle volume fractions and inter-particle collisions are negligible. Particle motion is assumed

to be governed by drag with particle relaxation times ranging from the Kolmogorov scale to the

Eulerian timescale of the turbulence and particle mass loadings up to one. The velocity field was

made statistically stationary by forcing the low wavenumbers of the flow. The calculations were

performed using 963 collocation points and the Taylor-scale Reynolds number for the stationary

flow was 62. The effect of particles on the turbulence was included in the Navier-Stokes equations

using the point-force approximation in which 96 a particles were used in the calculations. DNS

results show that particles increasingly dissipate fluid kinetic energy with increased loading, with

the reduction in kinetic energy being relatively independent of the particle relaxation time. Viscous

dissipation in the fluid decreases with increased loading and is larger for particles with smaller re-

laxation times. Fluid energy spectra show that there is a non-uniform distortion of the turbulence

with a relative increase in small-scale energy. The non-uniform distortion significantly affects the

transport of the dissipation rate, with the production and destruction of dissipation exhibiting com-

pletely different behaviours. Thespectrum of the fluid-particle energy exchange rate shows that

the fluid drags particles at low wavenumbers while the converse is true at high wavenumbers for

small particles. A spectral analysis shows that the increase of the high wavenumber portion of the

fluid energy spectrum can be attributed to transfer of the fluid-particle covariance by the fluid tur-

bulence. This in tum explains the relative increase of small-scale energy caused by small particles

observed in the present simulations as well as those of Squires & Eaton (1990) and Elghobashi &

Truesdell (1993).
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1 Introduction

The interaction of solid particles or liquid droplets with gas-phase turbulent flows controls the

performance of many engineering devices and is important in natural processes as well. Exam-

ples include the combustion of pulverised coal or liquid sprays, transport of particulate solids,

gas-phase reactions controlled by particulate catalysts, dust storms, and atmospheric dispersal of

pollutants. Especially relevant to the present effort are particle-fluid interactions in micro-gravity

environments. In each of these areas an increased understanding of the fundamental phenomena

that drive the complex interactions between the particle cloud and turbulent carrier flow is needed

to ultimately improve the design of engineering devices in which these flows occur.

Within the vast array of applications encompassed by two-phase flows, the particular interest

of the present work is on the interaction with a turbulent carrier flow of a dilute dispersed phase

of particles with densities substantially larger than the carrier flow, i.e., P2/Pl _ O(103) where

p_ and Pl denote particle and fluid density, respectively. For dilute flows the volume fraction of

the particles, c_2, is small. However, the particle mass loading, ¢ = o_2p2/pl, can be large enough

such that momentum exchange between particles and fluid results in a significant modulation of

the turbulence, typically referred to as two-way coupling (e.g., see Crowe et al. 1996).

For this class of two-phase flows the modulation of turbulence by particles is complex and still

not well understood. For example, experimental measurements in shear flows, e.g., particle-laden

jets and boundary layers, have shown that turbulence velocity fluctuations may be either increased

or decreased due to the modulation of the flow by heavy particles (e.g., see Tsuji et al. 1984,

Modarress et al. 1984, Shuen et al. 1985, Fleckhaus et al. 1987, Hardalupas et al. 1989, Gore &

Crowe 1989, Rogers & Eaton 1991, Kulick et al. 1994). In turbulent shear flows it is often difficult

to separate the direct modulation of the turbulence due to momentum exchange with particles

from the indirect changes occurring through modification of turbulence production mechanisms

via interactions with mean gradients. Furthermore, it is usually difficult in experiments to isolate

the effects of different parameters on measurements.

Numerical simulation offers another approach for examining the interactions between particles

and turbulence and the modulation of turbulence by particles. For particle-laden flows traditional

approaches relying on solution of the Reynolds-averaged Navier-Stokes equations require empir-

ical input, principally the prescription of turbulence properties along particle trajectories. For

applications of one-way coupling, i.e., no modulation of the flow, various modeling approaches

have been developed which adequately describe dispersion in simple flows, though the central

problem of prescribing Lagrangian quantities along particle trajectories remains an open ques-

tion (e.g., see Simonin et al. 1993, 1995). For applications of turbulence modulation by particles

turbulence quantities such as the kinetic energy and dissipation rate are modified directly by the

particles (e.g., through the appearance of source terms in the transport equations) as well as indi-

rectly through changes which particles causes in turbulence dynamics (e.g., see Squires & Eaton



1994).Thus,theempiricalinputrequiredfor Reynolds-averagedapproachesat thepresenttime

makes it difficult to obtain a fundamental understanding of turbulence modulation.

The most sophisticated numerical approach for examining particle-turbulence interactions is

direct numerical simulation (DNS). In DNS the Navier-Stokes equations are solved without re-

sorting to ad hoc modeling at any scale of motion. The primary advantage for calculation of

particle-laden flows is that turbulence properties along particle trajectories are directly available.

For applications of one-way coupling several studies have examined heavy particle transport in

isotropic turbulence (e.g., see Deutsch & Simonin 1991, Squires & Eaton 1991a, Elghobashi &

Truesdell 1993, Wang & Maxey 1993).

For two-way coupling DNS has been applied to particle-laden isotropic turbulence and has

demonstrated that the distortion of the turbulence is not uniform and is dependent upon the par-

ticle relaxation time (e.g., see Squires & Eaton 1990, Elghobashi & Truesdell 1993). Squires &

Eaton (1990) considered particle motion in the Stokes regime in which gravitational settling was

neglected. Computations were performed using both 323 and 643 grids at Taylor-scale Reynolds

numbers of 35 in which a steady, non-uniform body force was added to the governing equations

in order to achieve a statistically stationary flow. Particle sample sizes up to 106 were used in the

simulations. Mass loadings from zero (one-way coupling) to unity were considered for a series

of particle relaxation times varying from 0.3_-k to 1 l'rk where _-k is the Kolmogorov time scale.

For a Stokes drag law without gravitational settling it is straightforward to show that particles will

globally dissipate turbulence energy. Squires & Eaton (1990) found that the overall reduction in

turbulence kinetic energy for increasing mass loading was insensitive to the particle relaxation

time. They also showed a strong preferential concentration of particles into regions of low vortic-

ity and/or high strain rate (see also Wang & Maxey 1993). For cases of turbulence modulation,

Squires & Eaton (1994) attributed the non-uniform distortion of the _rbulence energy spectrum

by particles to preferential concentration.

Elghobashi & Truesdell (1993) examined turbulence modulation by particles in decaying isotropic

turbulence using resolutions of 963 for the Navier-Stokes equations and 343 particles. Particle mo-

tion in Elghobashi & Truesdell (1993) was governed by the equation derived by Maxey & Riley

(I 983). They found that for the large density ratios considered in their simulations particle motion

was influenced mostly by drag and gravity. Elghobashi & Truesdell (1993) found that the coupling

between particles and fluid resulted in an increase in small-scale energy. The relative increase in

the energy of the high wavenumber components of the velocity field resulted in a larger turbulence

dissipation rate. They also found that the effect of gravity resulted in an anisotropic modulation

of the turbulence and an enhancement of turbulence energy levels m the direction aligned with

gravity. Furthermore, in the directions orthogonal to the gravity vector a reverse cascade of energy

from small to large scales was observed.

While the work of Squires & Eaton (1990) and Elghobashi & Truesdell (1993) have advanced

our understanding, the effect of turbulence modulation by particles is not fully resolved. For ex-



ample,in thetransportequationfor turbulencekineticenergythecouplingbetweenparticlesand
turbulenceyieldsanadditionaltermwhichaccountsfortheenergytransferimpartedfromtheparti-
clestothefluid.BothSquires& Eaton(1990)andElghobashi& Truesdell(1993)haveshownthat
thedistortionof theturbulenceenergyspectrumissensitiveto quantitiessuchastheparticlerelax-
ationtime. This impliesthattheenergytransferfromparticlesto turbulenceactsnon-uniformly
acrossthespectrum.However,its overallbehaviour,norits spectraldistribution,isavailablefrom
previousinvestigations.Boththeglobalvalueaswellasspectraldistributionareimportantnotonly
for increasingfundamentalunderstandingbutalsodevelopmentof engineeringmodels.Relevant
in thisregardis theworkof Baw& Peskin(1971)who havepreviouslyconsideredthespectral
modulationof turbulenceby particles.Theyshowedthattheeffectof particlesis to decreasethe
energyathighwavenumbersmorethanthatatlowwavenumbers.Theiranalysis,however,contra-
dictstheresultsof bothSquires& Eaton(1990)andElghobashi& Truesdell(1993).

Theobjectivesof thepresentworkareto investigateturbulencemodulationbyparticleswithin
micro-gravityenvironments.Theparticularflow field of interestbeingisotropicturbulence.In
isotropicturbulencethereis noproductionandthereforefroma giveninitial condition,theflow
decaysovertime,i.e.,turbulencetimeandlengthscalesincrease.In decayingturbulencetheevo-
lutionof quantitiessuchasthekineticenergyanddissipationrateexhibita dependenceon initial
conditions.Thedecayof theflowanddependenceon initialconditionscomplicatesinterpretation
andanalysisof bothparticlemotionandturbulencemodulation.An alternativeto simulationof
decayingturbulenceiscalculationof flowsmadestatisticallystationarythroughanadditionof a
bodyforcetotheNavier-Stokesequationsinwhichtheforceisaddedtothelowwavenumbercom-
ponentsof thevelocityfield. Statisticallystationaryflowscanbeadvancedto anequilibriumin
whichparticlemotion,andtheeffectof particlesontheflow,areindependentof initial conditions.
Timeandlengthscaleratiosof theturbulencerelativetotheparticlesarealsostationary.Theforc-
ingschemeusedin thisworkis thatdevelopedby Eswaran& Pope(1988),whohaveshownthat
thesmallscalesofthevelocityfieldareinsensitivetotheenergyinputfromtheforcing.Discussion
of computationof two-waycouplinginDNSispresentedin §2.Thepoint-forceapproximationis
usedin thisworkto accountformomentumtransferbetweenparticlesandturbulenceandimpor-
tantissuesrelevanttothisapproacharediscussed.An overviewof thesimulationsisalsopresented
in §2withevolutionof statisticalquantitiesandthespectralanalysisin§3.A summaryofthework
maybefoundin §4.



2 Simulation Overview

2.1 True direct numerical simulation of two-phase flows

True direct numerical simulations of fluid flows loaded with heavy particles require that one re-

solves the standard Navier-Stokes equations for the fluid:

Out,i _ 0 (1)

Oul,i Oul,i _ 1 Opt + O_ul,,
Ot + Ul,k OXk Pl Oxi Pz OXkOXk " (2)

The effect &the particles on the fluid is formally taken into account through the boundary condi-

tions on the surface of each particle,

ut,,(x, t) = w_(x, t) for all points on the particle surface, i.e., (x, t) • f_n, (3)

where w_ is the instantaneous velocity of the surface of particle n (the n superscript is used

throughout this work to denote properties of a single particle). For rigid particles in translation,

w_ is the same everywhere on f_n and is equal to the velocity u '_ at the centre of the particle. The2,i

subscripts 1 and 2 denote the fluid and particle phases, respectively. Thus, in (1) and (2), Ul,i is

the ith component of the fluid velocity, Pl the fluid pressure, and Pl and ul the fluid density and

kinematic viscosity, respectively.

Simultaneous to the solution of (1)-(3), particle trajectories are computed using Lagrangian

tracking, the force acting on the particle being computed by direct integration of the simulated

fluid stress on the particle surface:

dx_# n

dt = u2'i (4)

du_,, fa[ oul, ]P2--_-- = P2gi + . -pl6ij + Ul-_xj ] nj dw. (5)

The displacement of particle n is x '_ the particle density is P2. The outward pointing normal
2,i,

to the surface _2'_ is nj, and 9i is the acceleration of gravity. The approach outlined in (1)-(5)

requires that the velocity field around each particle be accurately resolved and is viable only for

calculations with (9 (10) particles (e.g., see Unverdi & Tryggvason 1992). In a turbulent flow with

a large ensemble of particles having diameters on the order of the Kolmogorov length scale this

approach is not feasible owing to its enormous computational cost. Thus, approximations are

required in order to account for the effect of particle momentum exchange on the flow.
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2.2 Point-force approximation

Saffman (1973) showed that the perturbation in the fluid due to the presence of a particle decays

as the sum of two contributions, one as 1/r (long-range) and the other as 1/r 3 (short-range). For

particles small relative to the smallest length scales of the flow, and for particles separated by

a distance L large compared to their diameter d, the most important interactions are long-range

(e.g., see Koch 1990). Neglecting short-range interactions, e.g., particle wakes, is justifiable for

particles with diameters smaller than the Kolmogorov length scale of the flow field undisturbed by

the presence of the particle since in that case short-range perturbations are dissipated by viscosity.

The focus of this work will be on larger scales in which long-range interactions are dominant.

The Navier-Stokes equations can then be written for the fluid everywhere in the domain with the

influence of particles taken into account by Dirac distributions of the force, fd_, applied to the fluid

by each particle,

0ul,i _ 0, (6)
axi

0ul,, 0ul,i_ 10pl 02ui,_ 1
_,--:- + ul,k + v_ + --fc,i, (7)

0xk 0zi 8:ck_ZkgO Pl P1

du_,_ n 3 C_ ur_ _ _n
,2 dt - -fL + p2g,= I I + = -;2 + ;2g,. (IO)

The local drag coefficient in (10) is C_ and may be expressed in terms of the particle Reynolds

number Re_ as (Cliff et al. 1978)

24 [ o.,s¢] , _ _< 800, (ll)C_) - Re; 1 + 0.15Rep Rep I v_ulI d

and reduces to the drag force.

particle n as

dx'_,i
dt - u2,i, (9)

where

l f_,i = l f_i(x'_,i)6(x_ - x_,_). (8)

The force f2,,i is opposite of that applied to particle n by the fluid. As shown by Gatignol (1983)

and Maxey & Riley (1983), the forces acting on a particle can be considered to arise from three

contributions. The first contribution, fa, represents the virtual force that would apply on a fluid ele-

ment that coincides with the particle position, i.e, pressure forces and viscous stresses. The second

contribution, fb, arises from the perturbation of the fluid flow due to the presence of the particle.

For a rigid sphere of diameter d in translation, this perturbation of the surrounding unsteady non-

uniform flow results in the drag, added mass, and Basset history forces. The third contribution is

gravitational settling. For spheres with density P2 large compared to the fluid density p_, fb >> f_

The particle equation of motion can then be written for a single



where-r_ is the particle relaxation time, or time constant, defined as

n _ d24 p2 I,¢l - p2 1 (12)
vp 3 Pl d 18z_1Pl 1 + 0.15Re_ °68_ "

The local instantaneous relative velocity between particle n and the surrounding fluid is vr_i =

u n - _2n where _2" is the fluid velocity at the position of particle n of the flow field locally
2,i l,i' l,i

undisturbed by the presence of the particle (Gatignol 1983, Maxey & Riley 1983). The expression

for the drag force as written above is applicable to particles having diameters smaller than the

Kolmogorov length scale, i.e., d << 77. If d is comparable to _7, Faxen terms should be taken

into account (Gatignol 1983, Maxey & Riley 1983). Gravitational settling results in the crossing

trajectories effect which strongly influences particle dispersion (Csanady 1963, Squires & Eaton

1991 b). Elghobashi & Truesdell (1993) have shown that in two-way coupling gravity complicates

turbulence modulation. In the current study the parameters varied are particle relaxation time and

mass loading, the effect of gravity is not examined.

For a flow containing Np particles, the fluid velocity _2_,i required in (10) is that locally undis-

turbed by the presence of particle n, but taking into account the disturbances created by all other

(Np - 1) particles in the flow. This in turn requires that to determine the motion of each particle, a

total of Np flow fields are required. Only in the limit of one-way coupling is _2'_ identical to that
1,i

in a single-phase turbulent flow.

Durlofsky et al. (1987) showed that the exact resolution of two-phase flows two-way coupled

with Np particles under the point-force approximation requires inversion of a system of Np non-

linear equations, which becomes impossible for large Np. The difficulty to simulate, under the

point-force approximation, turbulence modulation by a large number of particles can be illustrated

by first considering a flow initially at rest with a single particle that influences the fluid. The

locally undisturbed fluid velocity is that without the particle. The drag force is then -u2,i/'rp while

the fluid velocity resulting from the disturbance created by the particle is the superposition of the

background flow and the perturbation due to the particle that is, for a fluid at rest containing a

single particle, a Stokeslet (e.g., see Gatignol 1983). For a flow modified by a large number of

particles the motion of particle n requires knowledge of the velocity that is locally undisturbed by

its presence, but takes into account the disturbance created by all other particles in the flow. In

this case the locally undisturbed fluid velocity for particle n is again that in which the particle is

not present in the flow but its influence must be maintained in determining the motion of all other

particles.

Thus, numerical simulation of two-way coupling requires that there must be as many undis-

turbed fluid fields as particles. Durlofsky et al. (1987) showed that this requires inversion of a

system of Np non-linear equations, which becomes impossible for large Np. For practical calcula-

tions a unique fluid velocity field is desired which is influenced by the entire ensemble of particles

but may also be used to obtain the velocity and position of each particle, i.e., a velocity field that

can be considered as the locally undisturbed fluid velocity for obtaining the motion of each particle.



2.3 Effective direct numerical simulation of two-phase flows

One approach to obtaining the locally undisturbed fluid velocities _2'_ would be to resolve the1,i

flow field ul,i influenced by the entire ensemble of particles and then subtract the local perturba-

tion induced by the particle presence. Considering Stokes flows, i.e., particle Reynolds number

Rep << I, in the dilute regime, i.e., inter-particle separations large with respect to the particle di-

ameter, Saffrnan (1973) showed that ul,i is the sum of u_,i and the local perturbation, the so-called

Stokeslet,

_l,i-'_ _rr3d[?3nr,i n 7"ifJ ] x2n= + + vr,j-_- j withr =[ x - [, r = x - x_. (13)u_,i

To obtain the locally undisturbed velocity field for each particle, g_1,i, an iteration procedure could

be developed using (13). For a flow with a large number of particles, however, the computational

cost becomes prohibitively large.

For practical purposes with a large sample of particles Np, and for intermediate particle Reynolds

numbers, it is necessary to assume that for each particle, the locally undisturbed fluid velocity field

_n n1,i can be approximated by ul,i. Therefore, the coupling force fa,i may be expressed as,

_n __ _n /Zn

P2 2,i -- Ul,if_dn,i = P2 _,i 1,i _ (14)

An estimate of the error made in simulations in which the approximation (14) is employed can be

obtained using (13). Defining Au_, i as the error, (13) shows that

3d [ n n rirj]Au_,_ - ul, = + Vr,j--g-]• (15)

In actual computations, the distance r between particle n and the grid nodes (where the locally

undisturbed fluid velocity, gn is approximated by that from the DNS, u_,i) is of the order ofl,i,

the mesh size. In simulations, the distance r between particle n and the grid nodes is of the

order of the mesh size Ax. Thus, on average, the relative error resulting from the use of (14) is

O(d/Ax) and, in addition to the restriction d << rl imposed by the point-force approximation and

neglect of the Faxen contributions in the particle equation of motion, the condition imposed by

the approximation of the locally undisturbed velocity _'_,i by Ul,_ requires that d << Ax. These

constraints are compatible since in a DNS calculation, r/is of the order of Ax. This constraint is

consistent with the assumption of the point-force approximation which retains only the long-range

fluid-dynamic interaction. Since in Direct Numerical Simulation (DNS) r/is of the order of Ax,

the above constraint is consistent with the assumption of the point-force approximation to retain

only the long-range fluid-dynamic interaction.

Furthermore, the identification between _n_,iand ui,i can be understood as the negligence of the

local perturbation of particle n on itself with respect to the influence of all the other particles on

particle n. If the Np particles are uniformly distributed, separated, on average, by a distance L,



they form a regular "particle-box". If one considers one particle n and looks at the perturbations

created by its nearest particles (6 at a distance L, 12 at a distance v_L and 8 at a distance v'_L), the

resulting perturbation dues to these particles on particle n writes as a sum of Stokeslets, assuming

that these Stokeslets can be based on the same ul,i, _'_ and u n The factor is:1,i 2,i'

6+-_+ (16)

Therefore, the Stokeslet due to particle n is negligible compared to those created by the nearest

particles when:

d 3d[ 12 --_3] 15d (17)<<

Thus including or not the effect of the Stokeslet due to particle n on itself is negligible when

L << 15Ax (18)

2.4 Direct numerical simulation of isotropic turbulence

The method used to obtain the fluid velocity is based on the direct numerical simulation technique

developed by Rogallo (1981) in which dependent variables are expanded in Fourier series and the

flow is represented in a cubic domain of volume L_ox = (27r) 3 with periodic boundary conditions,

Exact integration of the viscous terms is performed using an integrating factor and the non-linear

terms are calculated in physical space. The discretised equations are time advanced using a second-

order Runge-Kutta scheme. The reader is referred to Rogallo (1981) for further details on the

method.

The method is applied to computation of homogeneous isotropic turbulence. Isotropic turbu-

lence is non-stationary since in the absence of a production mechanism turbulence decays. As

discussed in §1, the continual evolution of turbulence quantities complicates analysis and interpre-

tation of decaying turbulence. Lack of a statistically stationary flow in particle-laden turbulence is

even more complex since the ratio of the particle relaxation time to fluid time scales changes as the

flow evolves. To alleviate these complications, a spatially non-umform, time-dependent body force

(or acceleration) was added to the low wavenumber components of the velocity field to maintain a

statistically stationary flow.

The large scales were forced using the scheme developed by Eswaran & Pope (1988) and

Yeung & Pope (1989) and is based on an Uhlenbeck-Omstein stochastic process that determines

an acceleration for each of the three velocity components and for each non nul wavenumber mode

within a shell in spectral space of radius KF. The complex-valued body force is added to the

momentum equations at each time step. The evolution of one component of the body force f at

time level n + 1 is obtained via

fn+l = fn(1 - dt/TF) + ex/2a2dt/TF, (19)



wheree is a random number taken from a Gaussian distribution of zero mean and unit variance.

The characteristic time of the process, TF, as well as the forcing variance, or, were equal to 1.4

and 0.033, respectively. A simple modification of the forcing was adopted in this study since

the Uhlenbeck-Omstein process assumes that the time step dt remains small with respect to the

characteristic time of the energetic turbulent structures, i.e., with respect to the Eulerian time scale

_'e (defined using the Eulerian fluid velocity and longitudinal integral length scale, Le). It is also

assumed that the time step dt remains large with respect to the small scale motion, characterised

by the Kolmogorov time scale Tk, which ensures that the forcing is independent of small scale

motions (Eswaran & Pope 1988). Therefore, the forcing acceleration was maintained constant

over 2"rk with a ratio Te/Tk _ 10. This small modification of the forcing scheme requires longer

averaging periods in order to ensure isotropy of the turbulence.

For the simulations reported in this paper the turbulence was resolved using 963 collocation

points with a forcing radius KF equal to eight. This resolution provides an adequate separation

between the forced modes and small scales and a large enough Reynolds number to obtain a sepa-

ration between the peak of the energy and dissipation spectra (Yeung & Pope 1989, Boivin 1996).

The maximum wavenumber of the simulation k,_x is v_/3N with N the number of grid points

in each direction (Rogallo 1981). As shown by several investigators values of km_r_ greater than

one ensure accurate resolution of small-statistics as well as accurate interpolation of fluid veloc-

ities (e.g., see Eswaran & Pope 1988, Balachandar & Maxey 1989). The Courant number of the

computations was 0.5 in order to minimise time stepping errors and ensure accurate resolution of

the small scales (see Eswaran & Pope 1988 and Yeung & Pope 1988 for further discussion).

Table 1 summarises the main characteristics of the reference fluid flow, i.e., without influence

of the particles on the turbulence, that was obtained following a time development required for the

flow to become independent of its initial conditions. The statistics were accumulated over a period

of roughly 77-_. In Table 1, q_ and _1 are the fluid kinetic energy and dissipation rate, respectively,

and are used to form the Eulerian time macro-scale, TE = q_/cl. The Reynolds number, Re)_, is

based on the Taylor micro-scale A, defined as

1 t t 3 '2 15Ul < U!. >1

= < >1= 5 < >1, ), =

J2

Re_=_ x/< ul >1, (20)
//1

(the ' superscript denotes a fluctuating quantity obtained by subtraction from the mean). The kinetic

energy and dissipation rate are related to the energy spectrum as

/0 /0 /?q_ = E(k)dk c1 = D(k)dk = 2u_ k2E(k)dk. (21)

The Lagrangian integral time scale shown in Table l, 7t, is obtained from integration of the La-

grangian autocorrelation. The Kolmogorov time scale is denoted Vk = (ul/_1) _/2. Averages of

turbulence quantities obtained over the computational volume are denoted < • > 1. With a ratio

Lei/Lbo x around 0.15, the computational domain contains an adequate sample of energy-containing

9



Table 1: Flow field parameters

L}/L; L /Zbox T"
0.015 7.00 5.70 1.98 0.148 62 1.26 0.43 1.23 0.35 0.32 0.051

eddies to avoid problems due to imposition of periodic boundary conditions (Yeung & Pope 1989).

Moreover, the ratio of the longitudinal length scale, L), to the transverse length scale, L_, is close

to two, in agreement with isotropic relations. Finally, also shown in the table is -r;_, the time scale

representative of the Taylor length scale A. It is formally defined with the time scale relation at

wavenumber k = 1/A valid in the inertial subrange, % = (A2/cl) 1/3 (Hinze 1975).

The energy spectrum for the reference flow is plotted in Figure 1. The energy at low wavenum-

bers differs from that measured in the grid-turbulence experiment of Comte-Bellot & Corrsin

(1971). The experimental values are the measurements using a two inch grid at a location where

Re,_ = 65, close to Rea = 62 of the reference flow in the DNS. The energy at high wavenum-

bers follow remarkably well the experimental data, which, considering the comprehensive study

of Eswaran & Pope (1988), illustrates that the forcing does not adversely affect the small scale

motion (see Boivin I996 for further discussion).

2.5 Numerical implementation of the coupling force

Properties of the particle cloud were obtained by solving (9) and (10) for a large ensemble of

particles. A second order Runge Kutta scheme was used for advancement of the particle velocity

and displacement. Interpolation of fluid velocities to particle positions was performed using third-

order Lagrange polynomials. Numerical experiments have shown that the scheme is accurate for

interpolation of quantities such as the fluid velocity (e.g., see Yeung & Pope 1988, Balachandar &

Maxey 1989, Boivin 1996).

Two schemes to incorporate the coupling force in the fluid momentum equations were consid-

ered. This process is a projection of the coupling force, defined at the particle position, onto the

grid. The first scheme, the so-called Particle-in-Cell (PIC) method, represents the coupling force

fc,i as proportional to the accumulation of forces fa_,i(Eqn. 14) induced by each particle n surround-

hag a node P (with volume V = Lbo,/N) on which the fluid velocity is calculated (e.g., see Crowe

1982):

vS2i(z'_'_) = a E Sd_,i' (22)
nin V

where a is a constant of proportionality to be defined. In the second scheme, rather than a sum-

mation of f,i_,iaround a node P, the force exerted by each particle on the fluid is projected onto the
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grid

Vf_(_'Y'z) = a _ proj(f_,P(x,y,z)). (23)
ninV

The weights in the projection operation in (23) can be based on the cell volumes as in Squires &

Eaton (1990) or on the distances between particle n and the eight nearest grid nodes as employed

by Elghobashi & Truesdell (1993). Both approaches yield similar results (Boivin 1996); therefore,

only the results in which the weights are based on cell volumes are presented below.

The two schemes (22) and (23) were tested using an instantaneous fluid velocity field which

was interpolated to 963 random particle locations within the computational box using third order

Lagrange polynomials. Fluid velocities obtained from the interpolation step were then projected

back onto the grid using (22) and (23). Figure 2 shows the energy spectra of the fluid velocities

resulting from this procedure. The second method (23) recovers much more of the kinetic energy

following the interpolation and projection steps as compared to the PIC scheme, e.g., a decrease in

the initial kinetic energy of only 2% using (23) compared to a reduction of 38% when using (22).

The figure also shows that the high wavenumber end of the energy spectrum is more accurately

recovered using (23) compared to the PIC scheme. Also shown in Figure 2 is the energy spec-

trum of the fluid velocities following interpolation of the initial field onto a mesh shifted by half

a grid cell (dotted curve in the figure). This curve shows that there is a relatively small filtering

of high wavenumber components of the velocity field due to interpolation. Comparison of this

spectra to those obtained following the projection steps shows the error resulting from the projec-

tion schemes. It is also important to note that another factor influencing the errors resulting from

interpolation and projection is the particle sample size. A smaller ensemble of particles will result

in a larger error in both the interpolation and projection steps. The simulations presented in §3

were performed using the same number of particles, 96 a, as in the tests outlined in Figure 2.

The constant of proportionality a in (22) and (23) depends on the nature of the particles, i.e.,

actual particles in which each particle in the simulation represents a physical particle, or stochas-

tic particles in which each particle represents the effect of several. Squires & Eaton (1990) and

Elghobashi & Truesdell (1993) considered stochastic particles. In that case, it means that for a

given particle relaxation time and mass loading, the influence of the particles on the fluid motion

is assumed to be independent of the average distance L between particles. This is fully legitimate

when L is small with respect to the smallest fluid length scale, the Kolmogorov scale _/. For actual

particles a = wd3/6, i.e, the volume of a single particle, while for stochastic particles a = a2/Np

where as is the volume fraction of the dispersed phase. For actual particles the volume fraction as

is determined from the total number of particles in the simulation, a2 = NpTcd3/6/L3ox, while for

stochastic particles, a2 is set arbitrarily through the specification of the mass loading ¢ = a2p2/pt.

It should be noted that the condition L << _/required for correspondence between stochastic and

actual particles is not met in the previous calculations of two-way coupling by Squires & Eaton

(1990) and Elghobashi & Truesdell (1993), nor in the present simulations. Thus, the particle re-
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Table2: Particlecharacteristicsatzeromassloading.

('rF)stok¢s 0,069 0.260 0.696

d/_7¢=o 0.11 0.21 0.35

Rev(¢ = 0) 0.38 0.84 1.52

_-Y(¢=0) 0.064 0.230 0.580

_-_/'rk(¢ = 0) 1.26 4.49 11.38

_-_/7-F(¢ = 0) 6.68 1.88 0.74

laxation time should be considered a parameter of the simulation, along with the number density,

which is determined based on numerical considerations as shown in Figure 2. The mass loading is

then changed by varying the material density of the particles.

2.6 Particle parameters and simulation validation

T FThe particle parameters are summarized in Table 2. The Stokes relaxation time is denoted ( 12)Stoke,,

r F is the particle relaxation time obtained from an ensemble and time average over all particles

with the same material properties. Simulations were performed for three particle relaxation times

and a series of mass loadings ¢ varying from zero (one-way coupling) to unity. Since corrections

are incorporated for non-linear drag via CD, the particle diameter d and density relative to the

fluid, p2/Pl (or, equivalently, the relaxation time and density ratio) must be specified. The particle

relaxation times were chosen roughly equal to the Kolmogorov, Taylor, and Eulerian integral time

scales, 7-k,¢=o, 7-;_,¢=0and %,¢=0, of the reference flow at zero mass loading. The corresponding

diameter variation yields particle Reynolds numbers up to approximately 1.5 for the largest parti-

cles. For the flow with the intermediate relaxation time, (Tp)Stokes = 0.2595, at a mass loading of

¢ = 0.5, the particles have a diameter d/_%=0 = 0.156 and a relative density p2/pl = 3296, typical

of gas-solid two-phase flow computations.

As discussed in §2.3, the fluid velocity locally undisturbed by the particle presence is approx-

i.mated in the DNS by the fluid velocity perturbed by all particles. While this is an approximation

required in order to perform DNS of two-way coupling, it should be pointed out that the inter-

polation of fluid velocities to particle positions and projection of the coupling force onto the grid

smooths the influence of the disturbance created by a particle on its own motion. For example,

using a linear projection to the eight nearest grid points around the particle means that each grid

node incorporates approximately the velocity disturbance from eight particles. Thus, on average,
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1/8of thevelocitydisturbancecreatedby particlen is interpolatedbackto its positionusinga
linearinterpolation.For ahigher-orderaccurateinterpolationsuchasthatusedin thiswork the
interpolationof thevelocitydisturbancecreatedby a particlebackto its positionis, in general,
smaller.Increasingthenumberof particlesactsto furtherreducetheinfluenceof aparticleonits
ownmotion.

An estimateof theapproximationof thelocallyundisturbedfluid velocity_2ni,,in (10)by ui,_,

which is modified by all particles and computed in DNS, was examined through calculation of the

position and velocity of two groups of particles having the same material properties in the same

simulation. The following test was undertaken to estimate the effect on second-order statistics from

approximating the locally undisturbed fluid velocity _2'_ in (10) by the fluid velocity ul,i which is1,i

modified by all particles and computed in DNS. The position and velocity of two groups of particles

having the same material properties were measured in the same simulation. Only the particles of

the first group influenced the fluid flow. For both groups the drag force was computed with the

"resolved ul,i which is, by construction, an approximation of _2_,i for the particles of the first group

but the exact _2n for the second group. Statistics from both groups such as the particle kinetic1,i

energy, the fluid-particle velocity covariance, the fluid kinetic energy along particle trajectories,

and the fluid-particle energy exchange rate in the fluid kinetic energy equation differed by less

than one percent.

3 Results

The simulations were started from an arbitrary initial condition that was time advanced until the

rate of energy added to the flow through the forcing balanced the dissipation. Particles were then

placed randomly throughout the computational domain with an initial velocity identical to the fluid

velocity at the particle location. Particles were tracked for another development period of roughly

four relaxation times in order for the particle cloud to reach its own equilibrium condition. Only

from that point were statistics accumulated by advancing the simulations an additional seven large-

scale time periods %. Around six eddy-turnover times were necessary to reach a new equilibrium

in which production was balanced by both viscous dissipation in the fluid and drag. Statistics were

then obtained for an additional seven "re.

3.1 Fluid-phase statistics

3.1.1 Effect of particles on turbulence statistics

The equilibrium values of the turbulence kinetic energy, q_, and viscous dissipation rate, el, in the

fluid are shown in Figure 3 and 4, respectively. In the absence of gravitational settling small par-

ticles, d << r/, will dissipate turbulence kinetic energy, consistent with the results in Figure 3. The

results in both Figure 3 and Figure 4 are also in good agreement with Squires & Eaton (1990). Fluid
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turbulence energy spectra E(k) are shown in Figure 5. For larger mass loading the energy at low

wavenumbers is diminished independent of T_, while particles can enhance the high wavenumber

components, the behaviour at high k depending on ¢ and r_. This is consistent with the different

behaviour exhibited by q_ and el in Figure 3 and 4. For decreasing 0-F, small scale motions are

relatively more energetic compared to the zero mass loading case. For larger T_ and increasing

¢, small scale energy reaches a minimum that occurs at lower mass loading that decreases with

T_. Note that for _-_ = 0.064 a net production of small scale energy occurs at ¢, similar to that

observed by Squires & Eaton (1990). It is interesting that modulation of the flow by particles is

capable of modifying the turbulence over the entire spectrum, the degree of modification depend-

ing on ¢ and 7-_. The modification is greatest for the smallest particles (7-F = 0.064) which not

only cause the largest increase in energy at small scales but also affect the lowest wavenumbers.

These results are contradictory to the notion that particles attenuate, on average, structures having

a time scale smaller than their relaxation time, which would have lead to a strong damping of high

wavenumber modes for particles with T_ slightly greater than 7-k.

It is also interesting to consider the possibility of "backscatter" of energy from small to large

scales as a response of the flow to the relative increase in turbulence energy at small scales. In the

context of this discussion, "backscatter" is simply regarded as an inverse cascade of fluid energy

at a given wavenumber. Shown in Figure 6 is the evolution with respect to ¢ of the fluid transfer

spectrum Tl1,1 (k) for the smallest particles that provide the largest enhancement of small scale

turbulent motions. The figure shows that, regardless the value of ¢, Tl1,I (k) has a form similar

to that in single-phase flow with a transfer of energy from large to small sca_es. The result in

Figure 6 is similar to that obtained in decaying isotropic turbulence by Elghobashi & Truesdell

(1993). Finally, it should be pointed out that to completely understand how two-way coupling

affects non-linear energy transfer in the fluid, a detailed study of triadic interactions is necessary

(e.g., see Domaradz_Xi et al. 1993).

The dependence of the Eulerian time macro-scale _-_ and Lagrangian integral time scale Tt on

mass loading is shown in Figure 7 and offers further insight into the effect of two-way coupling

on the different behaviour exhibited by q_ and el. The Eulerian time macro-scale increases with

larger mass loading, eventually reaching a maximum that occurs at larger ¢ for increasing _-_. As

is clear from the figure, the Lagrangian integral time scale exhibits a general increase with ¢. Thus,

assuming a direct proportionality between these scales, as is often done in turbulence models, is

not accurate for large mass loadings.

In decaying turbulence time scales increase with time (e.g., see Chasnov 1994). One can thus

hypothesise that the more the energy of certain scales decrease, the more their associated time

scales increase. For loaded flows, Figure 5 shows that small scales are diminished relatively less

than the large scales. Moreover, T_t characterises more large scale structures than T_, which is more

representative of the energy cascade. Thus, T_ should be augmented less than that r_ which is in

good accordance with the results.
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ShowninFigure8is theratiooftheparticlerelaxationtimetotheKolmogorovtimescale.The
figureshowsthattheratiodecreaseswithincreasingmassloading,aconsequenceof thereduction
in el. This is in turnconsistentwith theeffectof thelargerparticleson theflowbeingsimilar
to thatof thesmallerparticlesas¢ increases.Forexample,for 7_ = 0.58 the spectrum E(k)

shows a relative increase of small scale energy at high wavenumbers for ¢ = 1, similar to that

observed at smaller loadings for 7F = 0.064 (a similar feature may be observed in the spectrum of

the fluid-particle energy exchange rate shown in Figure 14). The reduction in the time scale ratios

with increasing ¢ complicates interpretation of whether two-way coupling can be more accurately

described using the ratio of the relaxation time to the time scale of the large eddies, T_/T_, or the

time scale of the smallest eddies, r_/Tk. To resolve this issue requires simulations at substantially

higher Reynolds numbers than can be achieved using DNS in order to provide a much larger

separation between _-eand Tk. This may come from an effect induced by the low Reynolds number

of the simulations that does not improve as the load increases, since el diminishes and with it

T_/Tk (see Figure 8). Thus the behaviour of large particles slips towards that of intermediate ones.

3.1.2 Turbulence transport equations

For statistically stationary isotropic turbulence modified by momentum exchange with particles,

the transport equations for the fluid turbulence kinetic energy and dissipation rate are,

--El "-_ IIql + Fql = 0, (24)

eal - cd2 + E_I + Fel = O, (25)

where _al and ¢d2 in (25) are the production by turbulent vortex stretching and viscous destruction

of dissipation, respectively; Ca2 can be expressed in terms of E(k) as

/0ea2 = 4v_ k4E(k)dk. (26)

As discussed, for example, in Smith & Reynolds (1991), production by turbulent vortex stretching,

sdl, is characteristic of a spectral transfer in that it measures the stretching of all turbulent struc-

tures. The terms Fql and F_L are the contributions from the forcing, 17iqlis the fluid-particle energy

exchange rate, and YI¢_ the fluid-particle dissipation exchange rate:

IIq, - -- [2 < q_ >2 -q12] II_, = -2u, < Out'i O(ul'i 2,,J (27)
7t2 r_2 Oxy Ox I >2 •

In (27), q12 is the fluid-particle velocity covariance, < q_ >2 is the fluid kinetic energy along the

" and u"particle trajectory, ul, _ 2,i are the fluid and particle velocity fluctuations measured along the

particle trajectory, respectively. Note that < • >2 denotes averages over the dispersed phase.

The production of dissipation c_ by vortex stretching is shown in Figure 9. The figure shows

a large reduction with increasing ¢ and a weak dependence (reduction) on v F. The dependence on
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particlerelaxationtimeappearsstrongerwith increasing05.Overall,eat exhibits similar behaviour

as observed previously with et (c.f., Figure 4). The viscous destruction of dissipation ca2 exhibits

an interesting behaviour plotted in Figure 10. It initially decreases with increases in loading. For

the smallest particles, ed2 attains a minimum for ¢ > 0.2, which seems to preclude an increase at

higher 05. The plateau in ed2 occurs at higher 05with increasing 1-_, Note also that the plateau in

ed2 occurs at the same mass loadings as that observed at high wavenumbers in the energy spectra

in Figure 5.

Thus the different types of particles do not influence the turbulent quantities in the same way.

By the relations (26) that link them to the turbulent energy spectrum, one knows that each of them

measures more specifically certain scales. Thereby this confirms the common expectation that the

types of particles should play differently on the turbulent scales.

Shown in Figure 1 1 is the relative behaviour of eat and ea2, the dissipation of the energy dis-

sipation rate e_ = eel - ea2, normalized by the quantity it is usually modeled by, -e_/q_. In

single-phase flows a balance exists between eat and ea2 and therefore these terms are modeled to-

gether (e.g., see Smith & Reynolds 1991). The ratio shown in Figure 11 increases with 05except at

low loadings for large particles where it actually becomes negative, indicating the effect of the par-

ticles is to provide a source of dissipation. The results in the figure clearly show that modulation of

the flow by particles can strongly disrupt the equilibrium between eal and ed2. This in turn implies

that e_ must be modeled differently than in single-phase turbulence, with an explicit dependence

on 05and _-_ (see Squires & Eaton 1994 for further discussion).

3.2 Particle source term statistics

3.2.1 Fluid-particle energy exchange rate

On average, the particles are an additional dissipation of kinetic energy. The fluid-particle energy

exchange rate i_q_ is therefore negative. When normalised by e_,¢=o, the evolution of -Ylq_ dis-

played in Figure 12 shows that dissipation by drag increases with particle size and mass loading.

However, the figure also shows that -IIql/et,¢= o appears to reach a plateau for larger _. The in-

creasingly large contribution of the particles to the total dissipation with larger 05 is shown more

clearly in Figure 13 where the ratio of the particle dissipation -1-Iql normalised by the total value

is shown. It should be noted that production of kinetic energy by the forcing, Fql, exhibits a slight

reduction with increased loading due to the fact that Fq_ measures the correlation between the

forcing acceleration and the low wavenumber modes of the velocity which decrease for increasing

The spectrum of the fluid-particle energy exchange rate, Ylql (/c), is shown in Figure 14. The

spectra display two regions, the low-wavenumber portion of the spectrum shows that the fluid tur-

bulent motion transfers energy to the particles, i.e., the particles act as a sink of kinetic energy. At

higher wavenumbers the spectrum of the energy exchange rate is positive, indicating that particles
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arecapableof addingkineticenergyto theturbulence.Thisenergy"released"by theparticlesis
notimmediatelydissipatedby viscouseffectsbut is in factresponsiblefor therelativeincreaseof
smallscaleenergypreviouslyobservedin theenergyspectra(c.f., Figure5a). Thus,in the low
wavenumberrangethefluid dragstheparticleswhileathighwavenumbers,particlescandragthe
fluid.

As shownin Figure14,thedragof thefluidby theparticlesismoreapparentatsmallerrelax-
ationtimesandfor largerloadings,e.g.,forT_ = 0.58,showninFigure14b,thereisessentiallyno
wavenumberrangeoverwhichparticlesimpartkineticenergyto thefluid. Thefiguresalsoshow
thattheabsolutevalueof thenegativeportionofthespectrumincreasesweaklywith_-_,indicating
thatthemagnitudeof Hql is anincreasingfunctionof 7-_.Thisis in accordancewith theresults
for HqlshowninFigure12.Forincreasing¢, theregionof positiveYiql (k) increases in magnitude

and the corresponding wavenumber range also shifts towards larger scales. The increase in IIql at

small scales is not large enough to counter-balance the increase in magnitude at large scales, which

in turn increases the magnitude of IIql for larger loading, however and as already pointed, falls off

at higher loads, see Figure 12.

3.2.2 Fluid-particle dissipation exchange rate

The source term representing the direct effect of the particles on the dissipation rate, 1-[,1, is shown

in Figure 15. This quantity undergoes the most striking evolution of the turbulence quantities. For

small ¢ it acts as a sink of dissipation, with the exception of the smallest particles, before becoming

a source of dissipation as the loading increases. The loading ratio at which II_ changes from sink

to source also increases with "r_. The evolution of 1-I_ can be more clearly understood from its

definition:

/0 /0
Particles with small relaxation times drag the fluid at small scales, an effect which increases with

larger loading. The weighting of the high wavenumbers in (28) accentuates this effect, ultimately

causing II_ 1 to act as a source of dissipation.

3.3 Spectral analysis

The spectral equations for the fluid turbulence, particle fluctuating velocities, and fluid-particle

covariance are obtained by manipulation of (7) and (10) (e.g., see Baw & Peskin 1971). These

equations allow one to form the appropriate two-point correlations from which Fourier transfor-

mation can then be applied to obtain the transport equations in spectral space.

In homogeneous isotropic turbulence, a projector can be used to pass from directional to tridi-

mensional quantities. Its application to the spectral equations followed by an integration over

angular variables yields equations governing the fluid turbulence energy spectrum, El_(k); the
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energyspectrumof thefluidturbulencealongtheparticletrajectory,E11,2 (k); the fluid-particle co-

variance spectrum, E12(k); and the particle energy spectrum, E22(k). For wavenumbers k greater

than KF (the radius of the spectral sphere of the forced modes) for which the forcing contribution

is identically nul these equations are,

_Ell(]_) = Tll,l(k) - (]_) + I_ql (k) (29)2ulk2Ell

E12(k) + _ + ulk 2 E12(k) = T12,1(k) + T12,2(k) (30)

2

+ _[ E_,_(k) + CE_:(k) ] (31)

E_(k) = T_,2(k)- _[ 2E_2(k)- El_(k) ] (32)

¢ [u;,_(k)(u_,, - u2,,)(k)] (33)n_,(k) - _

(see Baw & Peskin 1971, Boivin 1996). The integrals corresponding to the spectra are,

/0q_= E_l(k)dk < q_>2= Z_l,_(k)dk
(34)

jo /o
The terms Tl1,1, T12,1, 7"12,2and T22,2 represent non-linear energy transfer in the fluid turbu-

lence, transfers of the fluid-particle correlated motion by the fluid turbulence along the particle

path, and by the particle fluctuating motion, and the transfer of particle-particle correlated mo-

tion by the particle motion, respectively. It should be noted that Hql (k) was computed according

to its formal definition given above in (33). For non-settling particles in homogeneous isotropic

turbulence, [Iq_ (k) can also be expressed in terms of Ell,2 and E12 as,

¢
H_(k)- _ [Ex_,_(k)-E_(k)]. (35)

The integral of (35) gives (27). In the solution of the equations developed below, Ell,2(k) is

approximated by E_ (k), corresponding to an assumption of negligible differences in turbulence

properties measured along particle trajectories compared to those on the grid. For statistically

stationary flows such as that considered in this work, the time derivatives are zero. Closure of the

system (29)-(33) then requires models for the transfer terms.

3.3.1 Closure of the transfer terms - unloaded flows

For monophase turbulent flow, Pao (1965) proposed a form for T_,_(k) (typically denoted in

single-phase turbulence as T(k)) valid in the universal equilibrium range that respects the -5/3

slope in the inertial sub-range with a stronger damping of energy in the dissipative range. Pao
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(1965)assumedthattheenergyflux S(k) through wavenumber k is directly proportional to E(k),

the energy density at wavenumber k. From a dimensional analysis, S(k) can be expressed as,

dS(k) (36)
S(k)=c_-lcll/3kS/3E(k) with T(k)--dk '

where a is the Kolmogorov constant. For zero mass loading the fluid turbulence spectral equation

becomes for high Reynolds number turbulence,

da-lell/3k 5/3 -2ulk 2E(k) , (37)E( k)

whose solution is,

E(k) = o_e_/3k-SI3exp(-312a(krl)4/3). (38)

Figure 16 compares the theoretical energy and dissipation spectra with those from the simulations

at zero mass loading. The theoretical result can reproduce quite correctly the simulation results

provided that a = 3, rather than the usual value of 1.5 valid for high Reynolds number turbulence.

3.3.2 Closure of the transfer terms - loaded flows

In two-phase flows with two-way coupling, Baw & Peskin (1971) assumed that Tnj(k) can be

expressed similarly as in single-phase turbulence in which viscous dissipation is equal to the energy

transfer rate from the large scales. In an equilibrium forced turbulence the rate of energy transfer

from the large scales, via the forcing, is dissipated by viscous effects in the fuid or by drag around

the particles, i.e., Fql = ¢1 - 1-Iql. Thus, the energy transfer rate appropriate for a spectral analysis

of two-way coupling is the total dissipation, ¢1 - l-[q1, rather than simply cl as in single-phase

turbulence. Therefore, we propose to replace _1 by the energy transfer rate for two-way coupling,

el - 1-Iq,, in the expression for S(k). The transfer term Tl1,_ (k) can then be written as,

d 1
T_l,l (k) = --d-_a- (el - Hqt)l/3kS/3E11(k) . (39)

For Tm2,1(k), a closure analogous to that used in single-phase turbulence is adopted. The terms

T_I,_ (k) and T_2,1 (k) are similar in that T_I,_ represents the transfer of fluid-fluid correlated motion

by the fluid turbulence and Tz2,_ represents the transfer of fluid-particle correlated motion by the

fluid. Therefore, it is appropriate to replace E_I in (39) by Et2, while maintaining the same rate of

energy transfer el - Ylql, i.e.,

d 1
T12,1(k) = ---_a- (¢1 - I-lq,)V3kS/3E12(k) . (40)

Baw & Peskin (1971) assumed that, due to particle inertia, T12,1, T12,2 and T22,2 should be very

small and can be neglected. It seems rather hazardous to imagine particle fluctuating motion similar

to the fluid turbulence with a cascade of energy, etc. Thus, the development of closure models for
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T12,2 and T22,2, representing non-linear energy transfer by the particle fluctuating motion, would

require a completely different approach than that typically proposed for Tl1,1. Spectral closures for

T12,2 and T22,2 are not within the scope of this work and are therefore neglected.

With the approximations described above, the system of spectral equations becomes

d[ _ nql)l/3k /3  l(k)]
dk

d [ - nql) /3k /3 12(k)]

= -2ulk2Eu(k) - 4[ 2Eu(k) - E12(k) ] (41)
7"12

=-

= _(k) (43)

3.3.3 Model without T_2,1

If one neglects the transfer of the fluid-particle covariance by the fluid turbulence, Tn,1, then the

only differential equation to solve is that for Ell. The system (41)-(43) in this case is identical to

that obtained by Baw & Peskin (1971) with c1 - 1-Iq_instead of el as the rate of transfer,

d [ 0/-1(61- l_ql)l/3k5/3E11(k ) ] = _2121k,)_11(_ ) _ -_F [ 2Ell(k) - E12(k) ] (44)
dk

2

E12(k) -- 1 + ulk2r£E_l(k)_ (45)

E22(k) = _E_2(k). (46)
z

Using (45), the term due to the modulation of the turbulence by particles in the expression (44) for

E_ can be expressed as

¢ [ 2Ell(k) - E12(k) ] = -2¢

7.g
tit k 2

1 + Ulk27-_
E_t(k) . (47)

The right hand side of (47) is negative definite, indicating that particles act as a sink in (44) across

the spectrum. This is in contrast, however, to the results presented in §3 which showed that there

can be an increase in the high wavenumber components of the fluid turbulence, e.g., for the smaller

particles at higher mass loadings.

3.3.4 Model with T12,1

Inclusion of the closure model for T12,t requires solution of (42). It is also important to point

out that the term accounting for the modulation of the fluid spectrum, I-Iql (k), is changed by the

inclusion ofT12,1. Solving (31) for E12 and substitution into (35) yields:

¢ ulk 2 ¢
IIql(k ) -- TF [ 2Eli(k) - Et2(k) ] -= -2¢ 1 + uzk27. F Eu(k) + 1 + uzk27"F The(k). (48)
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Thecontributionin Yiql (k) from T_2,_ (k) should be positive at high wavenumbers and can therefore

balance the negative contribution from En (k). This in is in turn consistent with the change of sign

in II_1 (k) observed in Figure 14. Note also that the factor in front of T12,1 increases with ¢ and

decreases with __F. Moreover, the motion of larger particles is less correlated with the fluid, which

should in turn reduce the fluid-particle covariance transfer (c.f., Eqn. 40). Thus, inclusion of the

transfer term T12,1 is appears to behave in accordance with the evolution of the small scale motions

observed in the DNS.

3.3.5 Numerical resolution

The solution of (44)-(46) is more easily accomplished by defining new variables:

Gll(k) = 1�ill k _/3 E_(k) , fll = a(c_ - I-[ql) -1/3 (49)

G12(k) = 1//32 k 5/3 Era(k), /32 = c_(c_ - Hq,) -'/3. (50)

The general system (41)-(43) becomes for all k greater than KF,

dG,x(k)dk - /31 [ -2vlk U3 - 2 ¢---_k-5/3] G11(k) +/3i¢-¢-¢-¢-_k-5/3G12(k) (51)
T12 T12

dG 2(k) _ /32_3 k_ /3a l(k) +/32 -dk T_2

The system (51)-(52) can be solved numerically for both non-zero and zero values ofdG12 (k)/dk,

corresponding to inclusion or neglect of T12,1 in the spectral equations. Because Ell (k) and pre-

sumably E12(k) decrease more rapidly than k -5/3, conditions on GI_ (k) and Gl2(k) are G_ (o_) =

G12 (cxz) = 0. However, these conditions are not convenient for numerical solution. In order to

facilitate comparison between the DNS results and theoretical predictions, the spectral values at

k = 4 were used to solve (51)-(52). Note from Figure 16 that k = 4 corresponds to the beginning

of the region in which there is good agreement between the DNS results and theory for zero mass

loading.

Figure 17 compares the predicted spectra, with and without the closure (40) for T12,1, to the

DNS results for ,_ -- 0.064 and TI_ -- 0.58, both at ¢ = 1. For 7-_ = 0.064, inclusion of T12j

is crucial to obtaining a very good agreement between the DNS results and model prediction. In

particular, the model prediction does not roll off as rapidly at high wavenumbers and also respects

the relative increase of small-scale energy observed in the DNS. For _-_ = 0.58, the system (44)-

(46) (neglecting Tt2,1) is in reasonable agreement with the DNS results and Figure 17 shows that

inclusion of the model for T12,1 tends to over estimate E(k). As shown in the figure, however, the

smaller contribution for __F = 0.58 does not sufficiently damp Tt2,1 for the larger particles. This

implies that a more accurate model for the transfer of the fluid-particle covariance should have an

exhibit dependence on TF.

Figures 18a and 18b demonstrate the effect of T_2,1 on the fluid-particle energy exchange.

Shown in the figure is the modeled and actual form of the spectrum of the fluid-particle energy
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exchangerate,Hq_(k). Thecontributionsof thetermsin (48)arealsoshown.Thefigureshows
thatqualitativelythattheprediction(48), includingthetransferT12,1, can reproduce the overall

behaviour in IIql (k). In particular, the contribution of the transfer of fluid-particle covariance by

fluid turbulence succeeds in making IIql (k) positive at high wavenumbers for the small particles.

The integral value of the positive portion of Hql (k) is indeed inversely proportional to 7-_ and the

wavenumber at which the effect of the particles changes from a sink to a source of turbulence

energy also increases with 7-y in agreement with DNS results.12,

Figure 18 also shows that IIql (k) is over estimated at the lower wavenumbers. One factor

influencing the over estimation is the neglect of T12,2 in the transport equation for El2. If it is

assumed that T12,2 is analogous to non-linear transfers in the fluid, Tu,1 and T12,1, then T12,2 would

be comprised of two portions, negative at low wavenumbers and positive at higher wavenumbers.

In the spectral equation (31) for E12(k), T12,2 would then be a sink at low wavenumbers and a

source at high wavenumbers. At the large scales this would result in a reduction in E12(k) and,

according to (35), a decrease of Hq_ (k) at low wavenumbers. Similarly, the relative increase in

1-iq_(k) at high wavenumbers due to the contribution from T12,2 would also reduce the discrepancy

between model predictions and DNS results in Figure 18.

4 Conclusion

Direct numerical simulation of the incompressible Navier-Stokes equations has been used to in-

vestigate turbulence modulation by particles in isotropic turbulence within micro-gravity environ-

ments. The flow field was forced at the low wavenumbers to maintain a statistically stationary

condition. Three relaxation times ranging from the Kolmogorov time scale to the Eulerian time

scale of the reference fluid flow (q_ = 0) and loading ratios q_ranging from 0 to 1 comprised the

particle parameter space.

For non-zero mass loading, particles increasingly dissipate fluid kinetic energy as the loading

ratio increases, with the reduction in the kinetic energy being relatively independent of the relax-

ation time. Simultaneously, viscous dissipation in the fluid decreases with increases in _b, being

larger for particles with smaller relaxation times. Furthermore, the ratio of the kinetic energy to the

dissipation rate, that defines the Eulerian time macro-scale 7-_, differs noticeably from that of the

fluid Lagrangian integral time scale "r_, which increases with q_. The different response of quan-

tities such as the kinetic energy and dissipation rate to increased loading and changes in particle

relaxation time is in turn linked to the fluid turbulence energy spectra. DNS results show that

there is a non-uniform distortion of E(fi), with a relative increase in small-scale energy. The non-

uniform distortion significantly affects the transport of ¢_ since the production of dissipation ¢dl

and destruction of dissipation cd2 exhibit completely different behaviours. For example, for small

relaxation times and large mass loadings, particles can be a source of dissipation, rather than a sink

as conventionally modeled.
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Thefluid-particleenergyexchangerate,1-Iql,increasesrelativetothetotaldissipationforboth
largerloadingandrelaxationtime. ThespectrumIlql (k) showsthat,while thefluid dragsthe
particlesatlowwavenumbers,particleswithsmallT_ dragthefluidincreasinglyatlargerloading.
Thus,particles"release"to turbulentsmallscalemotionspartof theenergyextractedfrom the
largerscales.Thisphenomenonin turnexplainstheswitchfromsinkto sourceof thefluid-particle
dissipationexchangerateII_1thatoccursatlower¢ for smallparticles.A spectralanalysisshows
thattheincreaseof thehighwavenumberportionof thefluidenergyspectrumcanbeattributedto
transferof thefluid-particlecovariancebythefluid turbulence.

Whilethe approachusedin thepresentstudy-DNS-isappropriatefor detailedanalysesof
particle-turbulenceinteractions,thereareissuesrelevanttotwo-waycouplingwhichcannotbere-
solvedusingdirectsimulations.ThelowReynoldsnumbersandlimitedrangeof scalesinDNS,
for example,preventa determinationof whethertwo-waycouplingis bestdescribedin termsof
large-or small-scalevariables,i.e.,in termsof _'F/T_ or T_/Tk. Because of the "global" distor-

tion of the turbulence across the entire spectrum, a description of two-way coupling in terms of

small-scale variables may not be the most appropriate, as is conventionally assumed. Calculations

at substantially higher Reynolds numbers are required in order to obtain a wide separation between

the energy-containing and dissipating scales. While DNS of single-phase (homogeneous) turbu-

lence can be performed at higher Reynolds numbers, the computational constraints, e.g., adequate

particle sample sizes, necessary for accurate resolution of two-way coupling virtually prohibits the

use of DNS.
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Figure 1" Normalised turbulence energy and dissipation spectra of the reference fluid field, ¢ = O.
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